Panasonic

Integrated Personalization Services

Developer Guide for Android Interactives

Document Version: 1.0

Contents

OVEIVIBW ...ttt et s ab e e b e e e ab e e s bt e s b e e e ba e sab e e sab e e s sra e e sabeesba e e 1
PasseNger ManifEst DAta......iiiccuiiieiiiiie e ciiiee ettt ee e e et e e st e e e st e e e ba e e e e b e e e e e b aaeeenreeeeannees 1
MUltiple Payloadsooiiiiiiiiiiiiiiii 1

Yot A V7N o= 1] o =T F SRR 1
Flight Parameters IMATCRoioiiiiei ettt e et e e st e e e seate e e e ebteeeeensaaeeenns 2
Flight Params IMISMAtCR.......ciiiiiiiii i ettt e e e et e e s at e e e s bteeeeeabaeeeeansaaeeanns 2

6= gl N =T 0 g LT o 1= [= JR PP PP PP P PP PP PPPPPPPPPPPPP 3

(O T YT 14 Mo -4 1o RSO SURPPPRPNt 3
ISPAIAVAIIADIE ..o s e st et e s e s esbe e e saneesaree s 4
1 Mo =T 0] 2 U= o 1Y PR 4
Lol Mo T=q T oY R T=] [K V=TT [T R PR PPRR 4
[0 =41 I NN 7

Class Playlist, Bookmark, Profile, Preferences, Info, and Customccceeoveeeeiiiieeciiiie e, 9
Clear Fields versus SENSitive FIEISc.c.uiiiiiiiieieee e 9
Handling Seat Updates 0N IPS LOZIN ..cciiiiiiiiiiiiiiee ettt e e e e ettt e e e e e e sanean e e e e e e e e nnnnnees 10
Playlist @aNd BOOKMAIKSveiieiiiiiiiiiieee e e eecciiie e e e s eete e e e e e e st r e e e e e s e s sanatareeeeeeesnnnsneeeeeesesnnnsnnnnes 11

Recommendation NaMESPACE ..uuiiiiiiicciiiieeee e e ettt e e e e e s e e e e e s serre e e e e e e saaaateeeeeeeesasstaneeeeeesnnnsnsnees 14
Class ReCOMMENAALTIONviiiiiiiiiiieieece e st e e s s e e s s 14

Recommendation Algorithm DetailS.......cocueiiriiiiiiiiie et 14

2Ty o T o ol PP O PO PP PR UPRRPN 15
LAY 01 o 1= g N a ot Ao o P OO UUTOTRR PO 15
PErSISTENT STOME .o e e e s e e s e e e e e 15

Copyright © 2023 Panasonic Avionics Corporation. All rights reserved. Panasonic is a registered trademark of Panasonic
Corporation. Proprietary and Confidential.

i|Page

Overview

Integrated Personalization Services (IPS) allow the airlines to maintain a profile of each passenger by
tracking their preferences and inflight behavior. This allows the airlines to provide tailored services that
can boost passenger loyalty and ancillary revenue.

This guide is intended for Interactive developers who work with IPS client APIs through the Android
Seatback Application SDK. This supplemental information details the IPS behavior behind the APIs.

Passenger Manifest Data
Passenger manifest data (PMD) is passenger profile information that is transmitted by the customer to
the aircraft for each flight. It contains passenger information specific to that flight.

For cell modem transmission, it is typically sent approximately 20 to 40 minutes before the flight
departs. For KU transmission, it may be sent during the flight.

Note: The terms PMD and payload are used interchangeably.

Multiple Payloads

Only one payload is stored on the aircraft at any given time. When a new payload arrives, it overwrites
the previous payload. IPS does not currently store payloads for future flights.

Active Payload
When a payload arrives to the aircraft, the flight params in the PMD are checked against the flight
parameters of the currently open flight.
The three flight parameters are:
e Flight Number — checks only the numeric value
e Flight Origin — consists of the ICAO code
e Flight Destination — consists of ICAO code

All three parameters are checked by default, but this is configurable

1|Page

Flight Parameters Match
e If the flight parameters match, the new PMD is ingested and the information becomes available
to clients.

e The new PMD becomes the active PMD and is the fallback PMD in the event another PMD
arrives with flight parameters that do not match.

e The previously active PMD is removed.

Flight Params Mismatch

e If the flight params do not match, the new PMD remains dormant.
e If there was a previously ingested PMD, that PMD continues to be available to clients.

e If there was no previously ingested PMD, the most recently received PMD remains dormant
until the flight is opened with matching parameters

e If athird PMD arrives and its flight parameters also do not match the open flight's parameters, it
replaces the dormant PMD

2|Page

User Namespace

The User namespace in the Android Seatback Application SDK supports the personalization features
available to the Interactive. The APIs in the User namespace communicate with the IPS Client on the

seat.

Develops should use the User v2 APIs which support:

e Class SeatlLogin

e Class Playlist, Bookmark, Profile, Preferences, Info and Custom

Class SeatlLogin

IPS engagements typically support authentication that restricts all profile fields for a passenger to the

client without authentication.

If authentication is not supported, all profile fields for a passenger are available to the client without any

authentication.

The following describes the authentication flow and the actions during and after authentication. For
additional information on the following APIs, please refer to the SeatLogin Class in the Android Seatback

Application SDK.

API

public boolean isLoginReady()

Description

Returns whether login is available and the server
is ready for user to login.

public boolean isPdiAvailable()

Returns whether server pdi data available.

public LoginState getLoginState()

Returns login state as LoginState

public String getLoginFieldsNeeded()

Returns seat login fields as a JSON string

public void login(Map<String,String> loginFields,
boolean logoutPreviousSeat)

Login from the seat with login fields. Must call
getlLoginFieldsNeeded() to determine what fields
were required for login.

public void logout()

Logs out from the seat.

public void resetLoginFieldsNeeded()

Resets login fields needed.

public void setPdiAvailableChangelistener
(SeatLogin.PdiAvailableChangelistener
pdiAvailableChangelistener)

Sets PDI available change listener

3|Page

isPdiAvailable

This API returns the state of the pdi_available field. If the field is false, then login is not possible.
isLoginReady

This API reflects two states:
e the state of the auth_available field

¢ whether the passenger has exceeded the number of allowed failed logins during a specified time
interval

If API returns false, then it is not possible to login.

getLoginFieldsNeeded

IPS software is generic for all deployments. In other words, the same software version is deployed for
multiple customers.

However, you can customize how the software behaves through the service config that is appended to
the payload by PDI Ground. For additional information, please contact your Panasonic focal.

To login, the Interactive must know the fields the server is expecting for authentication. The
getLoginFieldsNeeded API provides the information programmatically.

The service config supports the following use cases:

o Different authentication fields depending on whether the passenger is logging in from a
Personal Electronic Device (PED) or Seatback Monitor, or whether the passenger is sitting in First
Class or Economy.

e An authentication rollover scheme where the expected login fields change depending on the
state of the authentication.

An example response from the getLoginFieldsNeeded API follows:

{

"attemptsRemaining': 3,
"authFields": {
“fields": [
“frequent_flyer.frequent_ flyer number_last 4 digits",
"travel info.ticket number_ last 4 digits"

],

"operator'': "or"
}1
"authFieldsPed": {

“fields": [
"frequent_flyer.frequent_flyer_ number™,
"travel info.ticket number"

1.

""operator'':

or

4|Page

3.

"hashFields": [
"frequent_flyer.frequent_flyer number™,
"frequent_flyer.frequent flyer number_last 4 digits",
"travel _info.ticket number",

"travel info.ticket number_ last 4 digits"

1.

"loggedIn': false,

"loginAvailable™: true,

"pdiAvailable™: true,

"timeRemaining”: 0O

Recommendations
e The response includes the pdiAvailable and loginAvailable states. You can optionally call this API
instead of isPdiAvailable and isLoginReady APIs.

e The response can contain different auth fields for different classes, such as PED vs Seatback
Monitor and First Class vs Economy.

e The response can contain information about the server expecting the auth fields to be hashed.

e The fields attemptsRemaining and timeRemaining have significance if the passenger exceeds the
number of allowed failed attempts

Note: The IPS client will not reject an auth request if a field in the request is expected to be hashed and
the field is not hashed. However, it will log a warning message.

5|Page

Duplicate Auth Credentials in PMD
It is important to check the login fields expected by the server when the customer allows the passenger
to rollover to a different authentication method.
Consider the following use case:
e A customer decides to use email_address or frequent_flyer_number for authentication.
e Afamily traveling together uses the same email_address when booking their tickets.
= This results in multiple passengers having the same email_address in the PMD.

= When a passenger from the family attempts to login using their email_address, the
server sees that there are multiple passengers in the PMD with the same email_address
and is unable to authenticate the passenger

e In this case, the customer wants the passenger to retry the login but with email_address and the
last 4 digits of the frequent_flyer _number

= This indicates that the login fields expected by the server for that seat has changed
because of the duplicate values found in the PMD.

= This use case is different from the use case where the passenger enters credentials that
don't match any user in the PMD.

The "multiple passengers have duplicate auth fields" use case describes a scenario where the internal
auth_state has rolled over from the nominal state of 0 to a new state of 1.

It has no relationship to the "login failed due to no matching auth field" use case which uses the
resetLoginFieldsNeeded API.

Note: The Interactive should check this API for the login fields expected by the server, especially if the
login fields may change.

6|Page

Login

The API for authentication is login, where the passenger's input is specified through the map loginFields.
For example, if the following auth fields are expected:

"authFields": {
“fields": [
"frequent_flyer.frequent flyer number_last 4 digits",
"travel _info.ticket number_ last 4 digits”
1.
"operator'': "or"

}

The passenger may authenticate with the last 4 digit of their ticket number. In that case, the map
loginFields displays as follows:

{"travel _info.ticket number_ last 4 digits':"0ffelabd1a08215353c233d6e
009613e95eec4253832a761af28ff37ac5al50c™}

Implicit Seat Swap

Implicit seat swap, if allowed by the service config, indicates that a passenger is allowed to login to a
seat to which they are not assigned in the PMD. For example, if a passenger is assigned to seat 1A in the
PMD, they can instead login to seat 2C. Their profile transfers from seat 1A to seat 2C as part of the login
workflow.

However, a passenger may only be logged into one seat at any given time. In the event a passenger is
logged into a seat and attempts to login to a different seat, the login API provides a logoutPreviousSeat
parameter to logout from the previous seat as part of the login workflow, where:

logoutPreviousSeat Description

true Logs user out from prior seat and logs user into new seat

false Login fails with message

credentials_in_use™: true,
"logged _in_seat': "1A"

}

7|Page

An example of how the parameter can be used:

e If the airline wants to auto-logout the passenger from the previous seat without confirmation,
the Interactive should always call the login API with logoutPreviousSeat = true.

e If the airline wants to prompt the passenger to logout of the previous seat before doing so, the
Interactive should call the login APl with logoutPreviousSeat = false.

On receiving confirmation from the passenger that they wish to logout of the previous seat, call
the login API again with logoutPreviousSeat = true

Explicit Seat Swap

An explicit seat swap is initiated from the crew terminal. In this case, the passenger profiles for each
seat are swapped. As part of this workflow, both seats are logged out and the passenger will have to
login again.

Note: The behavior where the passenger is logged out during an explicit seat swap was changed in
Versions 02.01.xx.xx and later.

resetLoginFieldsNeeded

The resetLoginFieldsNeeded API resets internal auth_state to the nominal state 0. This allows the
passenger can login with email_address or frequent_flyer_number again. Without this API, there is no
method to return the passenger to that nominal state.

If the customer does not use a rollover scheme for duplicate auth fields, then this APl is not relevant to
the Interactive and should not be used.

This APl is not used to reset the attemptsRemaining and timeRemaining fields which trigger when the
passenger attempts to login with the incorrect auth fields multiple times. It is not possible to reset these
values with an API. The passenger has to wait for the cool down period to expire before attempting login
again.

logout

This APl is used when the passenger wants to logout.

pdiAvailableChangelListener

Multiple PMDs to the aircraft. When a new PMD arrives, the Interactive should fetch PDI information

again, since it is possible that a passenger's profile has changed. Specifying a listener allows the
Interactive to monitor for any PDI updates.

8|Page

Class Playlist, Bookmark, Profile, Preferences, Info, and Custom

These classes allow the Interactive to get or retrieve and set or alter the passenger profile information
for the specified groups or combination of groups at the same time. These APIs can used at any time,
either before or after login.

Clear Fields versus Sensitive Fields

The passenger profile information consists of Key Value pairs (KVPs). The majority of the information in
the PMD is only retrievable after the passenger has successfully authenticated. However, some KVPs in
the PMD are retrievable without a login. These KVPs are known as clear fields.

There is a default declaration of whether each KVP is a clear field or a sensitive field. KVPs can be
reclassified from a clear field to a sensitive field or from a sensitive field to a clear field.

If a KVP is reclassified, that information is conveyed to the IPS server through the service config from PDI
Ground.

e When the Interactive fetches PDI information before the user has logged in, the server only
returns clear KVPs

e When the Interactive fetches PDI information after the user has logged in, the server returns
both clear KVPs and sensitive KVPs

There is no parameter for the Interactive to specify whether to fetch clear fields or sensitive fields. The
server decides which fields to return based on whether the user is authenticated.

When a passenger logs out, IPS client asks the server for PDI information as part of the workflow. The

server returns the clear KVPs for that seat number.

Seat Updates as Anonymous User

While the Interactive can only retrieve clear fields from the PMD for that passenger prior to login, it is
able use the same set of KVPs to persist the seat state. This means that the passenger can make a
number of changes at the seat, such as:

e Change their movie genre preference
e Add items to the playlist
e Bookmark content after watching part of a movie
and the information can be stored on the IPS headend as an anonymous user at the seat.

To persist the seat state at the headend, the Interactive must use the Android Seatback Application SDK
setter APIs to send the information to the IPS client.

In the event of a seat reset or reboot, IPS retrieves all previous settings, made as an anonymous user, for
the seat and make them available for retrieval even if the user has never logged into the seat.

These settings are treated as clear fields that can be retrieved without a login, since the settings were
made as an anonymous user that was tied to the seat number, not to the passenger.

9|Page

Handling Seat Updates on IPS Login
If the Interactive uses the Android Seatback Application SDK setter APIs to persist seat state prior to
login, then it must decide what to do with the state information when the passenger logs in.

If the Interactive does not use the Android Seatback Application SDK setter APIs to persist seat state
prior to login, then this section is not relevant.

If the changes made at the seat prior to login are not necessary, then:
e Itis not necessary to persist seat state. This means no IPS APIs are invoked prior to login.
e or, if seat state is persisted, to discard all changes made at the seat upon IPS login.
If the changes made at the seat prior to login are necessary, then:
e Combine the updates made at the seat prior to login with the passenger profile from the PMD
¢ Inthe event of a conflict, there are two choices:
e Always take the latest update which is the updates prior to login, or
e Ask the user to decide

The following diagram describes how the INT should function based on the above input

Airline cares about changes No Persist seat state No Lol
at seat level prior to login? prior to login? 2

Yes { Yes
Store Updates Store Updates
to IPS to IPS
Login Login

Resolve Conflicts i
Merge Updates Discard Updates

10| Page

The SDK supports both methods through the ConflictStrategy enum, which allows the Interactive to
specify

e KEEP_LATEST
e USER_DEFINED

Playlist and Bookmarks

A playlist is a list of content. A playlist may be created by the passenger or curated by the airline. The
following shows a playlist with 1 item.

{
"playlist”: {
"pac_favorites": {
"items": {
"1ts152200612959410": {
"uri': "media:3a34492e87db327182e50cee998d1e41"",
"ct'': "tvepisode',
"uri_parent”: "media:f3b41392e8d33285a079365941e08968"",
ts'': 1522006129594
}
}
}
}
}
Where
Key Description

uir Media URI identifier

ct Identifies playlist entry content type as tvepisode, movie or track

uri_parent Media URI identifier for album containing the track or TV series for the

episode
ts Timestamp of when media was added to the playlist.
Epoch Time in milliseconds.

11| Page

A bookmark is a representation of the elapsed time for a previously played content that has not been

fully consumed. It has the following information:

{
"bookmarks': {
"media:c867eff8a67630c7992ecc07e8a868de": [
{
"uri_parent”: "media:3a34492e87db327182e50cee998dle41™,
"soundtrack language': "eng",
"soundtrack_type': 0O,
"subtitle language': "eng",
"subtitle type': 0,
“"contentType': "movie',
"last_updated': 1540711750578,
"elapsed_time": 1059
}
1
}
}
Where
Key Description
uri_parent Media URI identifier for album containing the track or TV series for

the episode

soundtrack _language | Language of the media soundtrack
ISO 639-2 Code

Values are:
l=commentary
2=dialog

3=description

soundtrack_type Language type of the media soundtrack

subtitle_language Language of the media subtitles
ISO 639-2 Code

subtitle_type Language type of the media subtitles

Values are:

1=closed caption

12| Page

Key Description
2=subtitle

3=both

4=embedded

5=none

contentType Type of content

last_updated Timestamp of latest bookmark update.

Epoch Time in milliseconds.

elapsed_time Elapsed bookmark time of the media in seconds

cid Media category from where the bookmarked media was added.

There are maximum number of allowed playlist items and bookmarks. The nominal values are:
e bookmarks: 50
e playlist:
= movie: 50
= tvepisode: 100
= track: 200

But these values can be configured. Older bookmarks or playlist items are pruned when the number
exceeds the maximum. However, they are not removed or a deletion of those items in the offload.

When a PMD arrives to the aircraft with playlist or bookmark items, the server scans the bookmarks and
playlist as the user logs in.

If the item is not found in the media kit for that flight or if it is not available for that seat class, then it is
pruned from the list before it is returned to the caller. The item is only removed, not deleted. This
behavior can be disabled through a config.

The effect of not deleting the bookmark is that there is a possibility that older bookmarks or playlist
items remain indefinitely in the airline's database for that passenger, if the Interactive does not warn
the passenger about an excessive number of items and provide a way for the passenger to delete them.

These older items are uploaded to the aircraft each time the passenger travels again, which increases
the size of the payload. Ideally, the airline should delete playlist and bookmark items from passenger
lists after a period of time, such as 1 year, since media content is not available indefinitely on future
flights.

13 |Page

Recommendation Namespace

The recommendation service is a separate service from IPS, but it is packaged with the IPS loadable. As a
result, it can operate independently of IPS and/or make recommendations based on IPS information.

Class Recommendation
The following APIs are available through the Recommendation class

API Description

getSimilarMedia Returns items similar to the URIs or MIDs you directly provide to it as
parameters.

Returns the items currently/recently watched by passengers on the
flight

getTrendingMedia

getRecommendations Returns similar items based on your viewing history/playlist, which
Recommender pulls from IPS service

getEnsembleMedia Returns the getRecommendaitons and getTrendingMedia items.

This call saves the network from multiple calls and avoids duplicate
items. Items do not display for both recommended and trending.

Recommendation Algorithm Details

Recommender uses content based recommendation by:
e Gathering all movies that the passenger has watched or added to a playlist
e Weighing their effect on the score based on recency+percentage watched
e Building a content feature map for the passenger, which has a mapping of features to weights.

Example: If a passenger watches a lot of Bill Murray movies, that passenger’s content feature map
displays a large weight for actor:bill_murray, genre:comedy, country_of_origin:usa

14 |Page

Best Practice

Authentication

e isPdiAvailable and isLoginReady

The Interactive should hide or disable the login screen to the passenger when isPdiAvailable or
isLoginReady is false.

This prevents the passenger from entering credentials when the system is not ready to accept
them.

e Auth Failures

When the passenger exceeds the number of allowed failed attempts, the server rejects all
subsequent login requests for a cool down period. This occurs even if the auth fields are correct.

Ideally, the Interactive should disable the login screen to the passenger during the cool down
period. This prevents the passenger from repeatedly trying to login.

At a minimum, the Interactive should indicate to the passenger why their login is rejected.
Example: wrong auth field values versus locked out period.

The number of failed attempts and the duration of the cool down period are configurable
parameters.

Persistent Store

Decide up front whether your program intends to support persistent store.

Based on that decision, you may need to setup additional prompts to the user on login or just keep
latest changes as the default.

If you use persistent store, but do not resolve conflicts on login, the user will not be able to save or
make changes after login.

15| Page

	Overview
	Passenger Manifest Data
	Multiple Payloads
	Active Payload
	Flight Parameters Match
	Flight Params Mismatch

	User Namespace
	Class SeatLogin
	isPdiAvailable
	isLoginReady
	getLoginFieldsNeeded
	Recommendations
	Duplicate Auth Credentials in PMD

	Login
	Implicit Seat Swap
	Explicit Seat Swap
	resetLoginFieldsNeeded
	logout
	pdiAvailableChangeListener

	Class Playlist, Bookmark, Profile, Preferences, Info, and Custom
	Clear Fields versus Sensitive Fields
	Seat Updates as Anonymous User

	Handling Seat Updates on IPS Login
	Playlist and Bookmarks

	Recommendation Namespace
	Class Recommendation
	Recommendation Algorithm Details

	Best Practice
	Authentication
	Persistent Store

